

A Safe and Complete Gate-Level Register Retiming Algorithm

Babette van Antwerpen, Mike Hutton, Gregg Baeckler and Richard Yuan

Altera Corporation, 101 Innovation Drive, San Jose, CA 95134 (bantwerp,mhutton@altera.com)

ABSTRACT
Retiming a netlist is an often-studied problem that is not often
implemented in practice. Retiming is a relatively dangerous
operation in the synthesis flow due to its effects on simulation,
verification, debugging, issues such as meta-stability, and because
the timing visibility early in the CAD flow is significantly less
than would be desired. Many published algorithms also ignore
important issues such as register compatibility due to secondary
signals, don’t touch constraints, common FPGA hardware such as
RAM and carry chains and various illegal forms of register
moves.
In this paper we will discuss our solution to the retiming problem
which takes all these issues into account, provide empirical
evidence of the viability of retiming on large industrial netlists,
discuss the expected gains from retiming, and introduce better
ways of analyzing and quantifying these gains. Despite the many
additional constraints added to the problem, we show a 5.0%
mean improvement in performance with retiming vs. without on a
large set of industrial designs, and further that implementing
retiming without attention to legality overstates the gain by half.

Keywords
Programmable logic, FPGA, synthesis, register retiming.

1. INTRODUCTION
Register retiming is a synthesis operation in which registers
are moved across combinational gates in the netlist in order
to balance the delay on paths in the netlist, and hence
minimize the length of the longest path.
There are many solutions to retiming, but it is not often
discussed in the context of production quality tools for
various reasons: compile time, practical issues, legality
problems and difficulties with simulation and verification.
Nonetheless, there are significant gains to be had from a
proper and safe implementation of register retiming. We
find that some designs see huge gains in performance.
This paper outlines a complete algorithm for retiming in
FPGA-based designs, in which we do not just solve the
algorithmic problem, but do so efficiently, and with all of
the pitfalls of retiming properly addressed. Though some
papers have attempted to extend the pure algorithmic
problem to some additional problems such as register
power-up-conditions or reset signals, no paper that we are
aware of has discussed and solved all of these and other
issues that we will describe, or attempted to retime designs
which are representative of the type of complicated logic
found in industrial FPGA designs.

In Section 2 we introduce the classical retiming problem,
some of the known algorithmic solutions, and some of the
often ignored drawbacks of retiming. In Section 3 we give
our algorithm for gate-level retiming, which is based on
ideas from other papers as well as new approaches, and
discuss how to deal with the practical issues required in any
realistic CAD flow. Section 4 further discusses legality
issues such as meta-stability, and shows the effects that
implementing these restrictions will have on the quality of
results. Section 5 gives our empirical results on a number
of industrial benchmark designs, and we conclude in
Section 6.

2. REGISTER RETIMING
The measure of performance in a synchronous netlist is the
longest delay of any register-to-register path in ns (called
r2r) or, more commonly, 1000/r2r which gives the
maximum clock-speed in MHz at which the design can be
implemented without forcing functional failure. We will
call this measure fmax.
In a typical netlist, this worst case delay is not realized by
all register-to-register paths, so an attractive option is to
move registers across combinational gates in order to
balance the delays among all paths, and hence minimize the
worst-case delay.
A simplified diagram of a retiming operation is shown in
Figures 1 and 2. Figure 1 shows a graph in which the worst-
case register-to-register depth is three, with a pin-to-register

A

B

C

D

E

F

G

H

Figure 1: A netlist with logic depth three.

A

B
C

D

F

E

H1

H2

G1

Figure 2: The netlist of Figure 1 after retiming. Logic depth
is reduced to one.

and a register-to-pin depth of zero (clock signals are not
drawn, all registers are assumed to have the same clock).
Depths are measured in gates. By register retiming, we can
balance the lengths of the combinational paths and make the
input-to-register, register-to-register and register-to-output
depths all equal to one. Figure 2 shows the result of this.
Register H from Figure 1 is moved backwards over gate C,
resulting in two new registers H1 and H2. Register E is
duplicated: the original is feeding A and B, the duplicate is
feeding gate D. The duplicate of E and register G are
moved forward over gate D, resulting in register G1.
The retiming problem can be modeled as follows. Given is
a directed graph G=(V, E). Each node v has a non-negative
node delay d(v), and each edge e has a non-negative integer
weight w(e), which represents the number of registers on
this edge. A retiming of a graph is a function r that maps
each node to an integer r(v). The retimed weight wr(e) of an
edge e=(u,v) is w(e)+r(v)-r(u). A retiming is legal if the
retimed weights of all edges are non-negative. The delay of
a node in the graph G with retiming r is defined to be Dr(v)
= d(v) + max{ Dr(u) | (u,v) in E and wr(u,v) = 0 }. The
graph delay or clock period is the maximum of Dr(v) over
all nodes. Given a graph G=(V,E) with weights and node
delays, the objective of the retiming problem is to find a
retiming r such that the clock period is minimum.
The first algorithmic solution to the problem was given by
Leiserson and Saxe [11]. They present a dynamic
programming algorithm based on Bellman-Ford that finds a
retiming for a given target clock period c, if it exists.
Pseudo-code for this algorithm is given below.
ComputeRetiming(G)
set r(v) = 0 for each node v
for i = 0 to |V|-1

ComputeDelays(G,r)
for each node v with Dr(v) > c

increment r(v) by 1
ComputeDelays(G,r)
if any node has Dr(v) > c

there is no feasible retiming for c.
Function ComputeDelays(G,r) computes the delays Dr in
the graph for the given retiming with a similar algorithm.
ComputeDelays(G,r)
set Dr(v) = 0 for each node v
for i = 0 to |V|-1

for each edge e=(u,v) with w(e)+r(v)-r(u)=0
Dr(v) = max(Dr(v), Dr(u)+d(v))

Stop if none of the delays have changed

If after |V| iterations, Dr(v) still changes, this means that the
graph contains a positive cycle, and there is no solution. In
this case, the algorithm takes O(|V||E|) time. In most
practical cases this is too slow. Shenoy & Rudell [18]
presented a speed-up of this algorithm, which makes the
worst-case runtime O(c|E|) time, where c is the length of the
smallest cycle with positive delay. They apply a similar
speed-up to the retiming algorithm itself.

Given this algorithm, the optimum clock period retiming of
a graph can be found by applying binary-search on all the
possible clock periods. As an upper bound for the retiming
we can take the delay of the graph before retiming.
Leiserson and Saxe also discuss the problem of minimum
area retiming under delay constraints. This is the problem
where we try to find a retiming with the minimum number
of registers for a given target clock period. This problem is
also solvable in polynomial time, although the naïve
algorithm is very inefficient in practice. Shenoy and Rudell
[18] and Maheshwari and Sapatnekar [12] discuss more
efficient implementations of this algorithm. However, these
algorithms are not as simple and efficient as the Bellman-
Ford algorithm for minimum clock period retiming.
Another well-studied problem in retiming is the initial state
problem: each register in the circuit has an initial state or
power-up condition which may be high, low or don’t care.
This is the value that the register has at power-up of the
circuit. When moving registers around in the circuit, these
initial states have to be preserved, that is, the design has to
power-up in the same way. When moving registers forward
in the circuit (i.e. from inputs to outputs), preserving the
power-up state is always possible, because the initial state
of the new register can be computed by simulating the gate
through which the register has been moved forward.
However, when moving registers backwards in the circuit,
initial state computation is harder, and sometimes even
impossible. The problem of computing initial states for the
retimed circuit is NP-hard. Many papers give heuristics to
solve this problem, but most are too inefficient and
complicated to apply in a practical environment (Touati &
Brayton [17], Even, Spillinger & Stok [8], Maheshwari &
Sapatnekar [13], and many more).
When mapping for LUT-based FPGAs, applying retiming
before mapping to LUTs does not guarantee optimal LUT
depth. Retiming on LUTs after mapping however, also does
not give optimal LUT depth. Pan and Liu [16] introduce an
algorithm that simultaneously maps simple gates to LUTs
and applies retiming. Their algorithm guarantees optimal
LUT depth, but is very complicated and computationally
expensive. Runtime improvements of the algorithm have
been presented by Pan and Lin [15], and Cong and Wu [5].
The latter also considered area minimization. Cong and Wu
[6] also extended the algorithm to incorporate initial state
computation.
In most real-life circuits, there are multiple different clock
domains, and registers have secondary signals like clock
enables, asynchronous clears, etc. Legl, Vanbekbergen and
Wang [9], address the problem of retiming circuits with
clock enables, which later is extended to reset signals by
Eckl et al. [7]. They present an efficient algorithm to
compute upper and lower bounds on the retiming of nodes
that guarantee that any retiming satisfying these bounds will
be legal w.r.t. the clock enables and reset signals. They also

present a heurstic to retime a circuit that consists of
multiple related clock domains.
Many papers try to overcome the problem of the lack of
estimates of interconnect delay by applying retiming during
clustering and partitioning (Cong, Li and Wu [4], Cong,
Lim and Wu [2]), during placement (Singh and Brown
[19]), and in physical synthesis (Cong and Lim [3]).
There are a number of “pitfalls” in retiming which are
rarely discussed in the literature. One of the primary
contributions of this paper is in discussing a solution to the
problem that does take all of these problems into account.
For example, we must deal with multiple clock-domains
and secondary signals that introduce the notion of
compatible registers. These are a particular issue for
FPGAs, which often contain interface logic with different
clock domains. Other issues include the interaction with
user constraints − a don’t touch designation is critical for
any serious design in which the designer needs to maintain
internal registers for debug purposes − and restrictions on
retiming to avoid meta-stability and cross clock domain
problems. The latter we will refer to as legality issues in
retiming, and we devote Section 4 to the topic. Power-up
conditions have been dealt with in the past, but we are not
aware of any published papers that cover all the topics
necessary for a production quality system simultaneously.

3. OUR ALGORITHM
Our retiming algorithm is incorporated in a production tool,
which means it has to run fast and be maintainable. These
requirements rule out algorithms that combine technology
mapping and retiming for two reasons. First these
algorithms tend to be time consuming. Second they are so
intertwined with the technology mapping algorithm that it
will be very hard to get it to work with all the tiny little
details that are in a production version of a technology
mapping algorithm for multiple different device
architectures. Therefore, we have chosen to implement
retiming as a separate algorithm that runs on netlists
consisting mostly of simple gates and LUTs.
Input to our retiming algorithm is a netlist consisting of
simple gates (mostly AND, OR, XOR, and LUTs), primary
inputs and outputs, registers, and some gates that are
considered hard boundaries for retiming, such as RAM,
DSP blocks, and carry chains. Each register has a power-up
condition (high, low, or don’t care), and zero or more of the
following secondary signals: asynchronous reset (clr),
asynchronous preset (pre), and asynchronous load with
corresponding data (aload/adata),
The ultimate goal of retiming is to move registers around in
the netlist such that, after technology mapping, placement
and routing, each clock in the design runs at the highest
possible speed. Since we have imprecise visibility of
placement and routing during synthesis, we can only use a
delay model that takes no placement and routing into

account. Our delay model is mostly unit-delay, with some
special delays for LUT gates and miscellaneous gates like
carries for which there is a fast connection on the chip.
Even though our experience is that depth does not correlate
perfectly to final fmax, improving depth while marginally
increasing area in general makes final fmax better. Hence,
the goal of our retiming algorithm is to move registers
around such that for each clock domain, the clock period
after retiming of that clock domain is optimal with respect
to our delay model (though evaluation will use final place
& route fmax).
The most important constraint for our algorithm is that the
netlist after retiming is functionally equivalent to the netlist
before retiming. Another important constraint is that the
area increases at most 2% on average, and preferably never
more than 20%. Other constraints are usability constraints
that prevent movement of some registers and that disallow
movement of registers over certain gates (e.g. RAM, carry
chains). Some more issues are discussed in Section 4
Our algorithm consists of three steps.
1. Build a retiming graph from the relevant part of the

netlist.
2. Find an optimum clock period retiming in the graph,

satisfying the given constraints.
3. Apply the obtained retiming to the netlist.
Most research papers only address step 2. It is interesting to
note that in our implementation, step 2 makes up less than
20% of the code for the complete algorithm. We will
discuss each step of the algorithm in more detail in the
following sections.

3.1 Building the Retiming Graph
The retiming graph has to model the gates and
interconnections that are involved in the retiming, but also
all possible restrictions that need to be satisfied. We run
retiming per clock domain, and will make separate retiming
graphs for each clock domain.
The graph consists of input nodes, output nodes, internal
nodes, and a so-called host node. For each combinational
gate (simple, LUT, or complete logic cell) that is connected
to a register in the current clock domain, we create an
internal node in the graph. For each hard boundary gate, we
create an input and/or an output node in the graph,
depending on whether it feeds or is fed by combinational
logic that needs to be included in the graph. For each two
nodes u and v in the graph, there is an edge from u to v for
every path through only registers from the gate
corresponding to u to the gate corresponding to v. The
weight of this edge equals the number of registers on the
path. Figure 3 shows how a netlist is translated into a
retiming graph. Clock and secondary signals of the registers
are ignored. The solid bars in the graph denote registers: the
number of bars on an edge equals its weight. The existence
of node H (the host node) is explained below.

To explain the use of the host node, it is important to know
that we use Leiserson & Saxes retiming algorithm to
determine a legal retiming for a given clock period. In order
to use this algorithm, we need to be able to move registers
from output pins to input pins and vice versa in the retiming
graph, even though this is not legal in the circuit. We create
a host node H that has an outgoing edge to each input node
and an incoming edge from each output node. This allows
us to move registers from outputs to inputs and vice versa.
In the circuit, it is not legal to move registers out of the
circuit, or into the circuit, which means that we have to
ensure that for our final retiming, r(v) = 0 for all input and
output nodes v. This is modeled by giving each incoming
and outgoing edge of the node H weight one, and setting
the delay of node H to current target clock period. It can be
verified that in this way, any feasible retiming can always
be changed into a feasible retiming with the same clock
period in which the host node and the input and output
nodes all have r(v) = 0.
Given a gate and a register on each of its inputs, we can
only apply forward retiming if the registers on its inputs are
compatible. We define two registers to be compatible if

and only if they have the same clock enable, their
asynchronous signals are triggered at the same time, and
furthermore, if both registers have an asynchronous load,
they load the same data. If the registers on the inputs of a
gate are compatible we can move them through the gate and
compute the asynchronous signals and power-up state of the
new register by simulating the gate. Figure 4 and Table 1
show an example of this for forward retiming through an
XOR gate. For each value of an input pin, Table 1 contains
the corresponding value of the registers and gates.
To make sure we never try to move incompatible registers
forward over a gate, we set lower bounds on the retiming
numbers of certain nodes. Legl, Vanbekbergen & Wang [9]

and Eckl et al. [7] show how this can be done for registers
with clock enables, clear and preset. We extend this to
handle asynchronous loads as well: Each register is given a
class, which basically consists of a clock enable, a list of
signals that trigger asynchronous events, and the
asynchronous data signal if it exists. Two classes are
compatible if they have the same clock enable, the same list
of asynchronous trigger signals, and either the same
asynchronous data or one has no asynchronous data. Note
that compatibility is not an equivalence relation.
Initially when we build the retiming graph, we give each
edge (u,v) a list of classes of registers that is formed as

follows. Suppose when walking on the path from u to v in
the netlist, we meet registers r1, r2, …, rn in this order. Then
the class list on the edge (u,v) will be (c(r1),c(r2),…,c(rn)),
where c(ri) is the class of ri. With these class lists we
compute a so-called maximal forward retiming of the graph,
by applying forward retiming as much as possible, but only
moving registers forward over a node when all involved
registers are compatible. The class lists are adapted during
the forward moves. See [9] and [7] for details. When no
changes can be made anymore, we have found a maximum
forward retiming of the graph. For each node in the graph
that has incoming edges with positive weight, but can not
be forward retimed anymore because the registers are
incompatible, we set the current retiming number as a lower
bound on the node. The class lists on the edges will be
discarded after this.
In the retiming graph, lower bounds on retiming numbers of
nodes are implemented by adding extra edges to the
retiming graph. For instance, if we have a lower bound of k

A

B

D

E

F

G

HLUT1

H

i1

i2

i3

A

B LUT1

D

i1

i2

i3

o1

RAM

RA
M

o1

Figure 3: A netlist and its retiming graph.

C

aload adata

clrpre

ALD

CLR

PRE

D

B

A

clrpre C
adata

E

clr

aload

D

ALD

PRE

CLR

power-up high

power-up low

power-up
high

Figure 4: Forward retiming with asynchronous secondary
signals.

Signal A B C
Power-up 1 0 1
CLR 0 0 0
PRE 1 1 0
ALD D 1 D’

Table 1: Simulating the asynchronous secondary signals
for the netlist in Figure 4.

on the retiming number r(u) for a given node u, we add an
edge from H to u with weight k+1.
For backward retiming, we could have applied the same
idea to avoid merging incompatible registers, similar to [7].
However, in this case, it is always possible to insert extra
logic to fix the problem of incompatible registers, as is
shown in Section 3.3. We found that it would limit the
ability for backward moves by too much.

3.2 Finding a good retiming
As said before, a major requirement for the algorithm is that
it needs to be fast. Therefore we start with the Bellman-
Ford algorithm as presented by Leiserson & Saxe [11], with
the additional speed-ups as presented by Shenoy & Rudell
[18]. To find the best possible cycle time, we apply binary
search on the cycle time.
When the optimal clock period is found we need to find a
retiming for this clock period that keeps the area increase
under control. We try to minimize the number of register
moves, because that has proven to be a good method to
control area. Especially backward moves have a potential to
increase area, because they may introduce extra logic.
Even, Spillinger & Stok [8] apply Bellman-Ford in reverse
order, starting from outputs instead of inputs. They claim
that it helps keep the total number of backward moves
down. We implemented this and found that the algorithm
works well for circuits that don’t need backward moves,
since it will generate none. However, for circuits that
require backward moves their algorithm usually needs more
backward moves than the original one (this was also noted
in [5]). Since it cannot be decided beforehand which
algorithm will result in less backward moves, we apply four
variations, and pick the best result. The four algorithms are
(1) Bellman-Ford, (2) reverse Bellman-Ford, (3) start with
forward Bellman-Ford, set retiming to zero for all nodes
with r(v) < 0, and apply reverse Bellman-Ford on the partial
solution, and (4) start with reverse Bellman-Ford, set r(v) to
zero for all nodes with r(v) > 0 and apply forward Bellman-
Ford on the partial solution. The noted speed-ups apply to
each of these variations, and after Bellman-Ford, we change
the retiming of each node such that all input and output
nodes have retiming zero. The metric for “best” is min
sum{-r(v)*w1 | r(v) < 0} + sum{r(v)*w2 | r(v) > 0}, where
w1 and w2 are weights we give to forward and backward
moves, respectively.

3.3 Applying the Retiming to the Netlist
When the final retiming is found in the retiming graph, it
has to be applied to the netlist. Note that at this point we
assume the given retiming has r(v)=0 for the host node and
all input and output nodes. The retiming is applied to the
netlist by moving registers over gates one by one. First the
forward retiming is applied to all nodes with the following
algorithm. It maintains a stack of all nodes v for which
r(v)<0 that have registers on all inputs. Then as long as the

stack is non-empty, it pops a node from the stack, calls the
function ForwardRetime on this node, and pushes new
nodes that require forward retiming on the stack when
necessary. The function ForwardRetime(v) forward-retimes
the gate in the netlist that corresponds to node v, and
increments r(v). It applies simulation to compute the power-
up state and asynchronous secondary signals of the new
register that is placed on the output of the gate. See also
Figure 4 and Table 1.
When the forward retiming algorithm is completed, it is
guaranteed that r(u)>=0 for all nodes u in the graph. After
this, we apply backward retiming in the same way. Like
procedure ForwardRetime, we also need a procedure
BackwardRetime that applies backward retiming to a gate
in the netlist. This function is different from the forward
retiming, because it may encounter incompatible registers
and furthermore, it is not always possible to compute new
power-up states and asynchronous secondary signals after
moving registers backwards through a gate. The procedure
to solve these problems goes as follows.
Given a gate that needs to be backward retimed, we know
that it fans out to only registers. We first merge registers
that are equivalent. If the gate still fans out to more than
one register after this, then these registers are incompatible,
and the gate is duplicated such that each copy has fanout to
only one of the registers. All duplicates of the gate will be
backward retimed. To backward retime each single output
gate, the register is removed from its fanout and registers
are inserted at each of the fanins of the gate. If the gate is an
AND or OR gate, the new registers get exactly the same
power-up setting and asynchronous signals as the original
register. It can easily be verified that this gives exactly the
same functionality for this gate. If the gate is an XOR or
LUT however, setting the same power-up and asynchronous
signals would not necessarily give the same functionality.
To ensure the same behavior, we do not set different preset
and clear signals on the new registers. Instead, we give both
registers power-up don’t care and no asynchronous
secondaries. Then at the fanout of the gate, we insert some
extra logic and registers to fix the problem. See Figure 5 for
an example.

4. LEGALITY AND PRACTICAL ISSUES
There are many issues that make it dangerous or illegal to
move certain registers in a design, in a sense that the
register moves may change the behavior of the circuit
without the designer realizing it, or even being able to
detect it. These issues are usually ignored in most research
papers, but have to be taken into account in a real-life
implementation, and do change the quality of results (by
about 50%, as we will see later). We list some of these
issues below.
Registers fed by unrelated clock domains. Registers in a
design may be fed by registers in other clock domains,
either directly or through combinational logic. When the

clock domains are unrelated, it is dangerous to duplicate the
register that is fed by the other clock domain: after
duplicating it, the two registers may clock in different data
at the same clock edge, because they see the data at slightly
different times, or because of clock skew. Problems like this
are hard to discover for designers, thus we disallow moves
of these types of registers.
When a register is fed by a different clock domain, it may
go in a meta-stable condition due to setup and hold time
violations. To make sure that meta-stable registers don’t
feed other logic on the chip, the data that comes from the
unrelated clock domain is often fed through a sequence of
two registers with the same clock, before feeding other
logic, to drastically decrease the probability of meta-
stability on the register feeding the rest of the circuit. It is
clear that if these synchronization registers are moved away
from each other, the absence of meta-stability cannot be
guaranteed. Hence we do not allow those moves.
Input/output registers. Registers that are directly fed by a
pin or directly feeding a pin, are often there on purpose, so
that the designer gets deterministic I/O timing. Therefore,
we do not move these registers.
Registers feeding asynchronous signals on other registers.
Duplicating these registers may result in glitches in the
asynchronous signal, which may result in unexpected values
on the register. Therefore we do not move registers that
feed asynchronous signals on other registers.
Registers feeding registers in another clock domain. To be
safe we do not move these registers either.
The restrictions described above infer that retiming has less
flexibility in moving registers around. Since we are
potentially over-restrictive on some of the above
assumptions and rules, the user has the ability to override
our rule by setting a logic option on the register when they
know the retiming is safe.
Non-retimable critical paths. When a large number of
registers cannot be moved due to reasons described above,
the delay-critical path in the retiming graph may be formed
by a zero-weight path from input nodes to output nodes.

Since these paths cannot be improved by retiming in any
way, they are limiting the retiming. We partly solve this
problem by removing all edges from the retiming graph that
are not on any path with an edge with positive weight (i.e. a
movable register). The idea behind this to ignore the
critical path that cannot be retimed, and instead concentrate
on the next critical path. In the end, this will help fmax,
because place & route will deal with less near-critical
paths.
Timing constraints. Designers can put timing constraints on
individual registers. For instance, they can put a multi-cycle
constraint from register A to B, meaning that B only clocks
in the data from A once every so many cycles. When two
registers have different timing constraints, we cannot move
them over a gate and merge them, because this would
invalidate the timing constraints. We currently disallow
movement of registers with individual timing assignments.
Verification. Most verification tools that are currently on
the market only do static verification of combinational
logic. However, this technique is not sufficient to verify that
a netlist before retiming is functionally equivalent to the
netlist after retiming. This makes it very hard to use
retiming when verification is needed.
Simulation. The retimed netlist will have the same
input/output behavior as the netlist before retiming. This
means that simulation on input and output pins will not give
any problems. But it will be impossible to simulate registers
in the netlist, because registers disappear from the netlist.
Similar problems occur when using signal-tap (hardware
debug macros supported by the tool) to probe internal
nodes.
We support the latter two issues essentially through user
logic-options such as don’t-touch which can be assigned to
named registers in the design, and by outputting a detailed
report on registers created and removed by retiming.

5. EMPIRICAL RESULTS
Our results are based on synthesis with Altera’s Quartus II
V2.2 software, using the Stratix architecture [10].
We run our retiming algorithm at the end of technology
independent synthesis, before technology mapping. At this
time, the netlist consists mostly of simple gates, which
allows for many potential places in the netlist to move
registers to. At the end of technology independent
synthesis, we have a good visibility of the depth of the final
mapping: experiments show that at this point, the depth in
two-input gates correlates well to the final LUT depth after
mapping. Before running retiming we therefore decompose
all simple gates into two-input gates, using the algorithm
DMIG [1], which finds a decomposition that guarantees
optimal gate depth.

B

pre

ALD

CLR

PRE

D

A4

A3

B
adata

A

clr

aload

D

ALD

PRE

CLR

power-up low

power-up lowpower-up
high

pre

adata

A1
clr

aload
power-up
high

A2 power-up
high

pre

DC

GND

 Figure 5: Fixing asynchronous secondary signals in backward
retiming.

Retiming fmax gain (Quartus synthesis)

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

designs

fm
ax

 g
ai

n
(re

tim
in

g
on

 v
s.

 o
ff)

geomean 5.0%

winners geomean 10.2%

Figure 6: Fmax gain distribution chart for retiming
(Quartus II synthesis with and without retiming)

The retiming algorithm is run for each clock domain
separately. After retiming is finished, we run a clean-up
function that makes sure all power-up states and
asynchronous secondary signals are legal for the current
device, followed by a number of logic minimization steps
to remove duplicate registers and redundant logic that may
be introduced by retiming.
We compare final fmax results (after placement, routing
and timing analysis) when the retiming algorithm is turned
on vs. off, along with area and runtime. The data
represents average results on a per-design basis with each
design run on two initial placement seeds.
The designs used for these experiments are industrial
designs that range in size from 12,000 to 56,000 4-
LUT+DFF logic elements, and include multiple types of
RAM and DSP blocks (dedicated multiply/accumulate
hardware). The size of the retiming graph ranges up to
210,000 nodes (gates) in the largest case.
The geometric mean improvement in fmax from our
retiming algorithm is 5.0%. However, this is not an
accurate metric of the behavior of retiming. Figure 6
contains a gain distribution chart, showing the individual
gains over all the designs tested with the algorithm.
Though the average improvement is 5.0%, the results are
roughly split between winners and losers/ties, with 39
winners gaining 10.2%, 13 ties with no effect, and 15 losers
giving up 3.9% fmax. The large number of zeros deserves
mention: when the retiming algorithm decides it cannot
improve the design we guarantee identical results to the
previous case by just not back-annotating the retiming. The
negative results represent designs for which the timing
model used in retiming predicted a gain, but this turned out
to be a loss after place & route.
Designs that have already been well pipelined by the user,
and designs which are well-written in general we feel have
less to gain from retiming. Designs in the prototype stage,
or which have not been analyzed completely tend to get
significant gains from retiming. Thus, we believe that this
gain distribution is characteristic of retiming in general, and
is a crucial part of presenting the results. We have some
examples of large designs where over 200% improvements
can be achieved with retiming, in one case the critical path
goes through a poorly coded multiplier followed by a
multiple-bit shift-register. Such a design would
significantly improve our reported mean gain. However we
have decided that these outliers are not realistic and
overstate the gains from retiming, so we do not include
them in our benchmarking results here.
For evaluation purposes, we can allow the unsafe retiming
discussed in Section 4, and we find that safety constraints
block an additional 2.6% fmax gain, which is about 50%
over the 5.0% reported for safe retiming. This means that,
in addition to generating potentially non-functional circuits,

any tools which do not enforce these rules are likely over-
estimating the gains by a third.
Because of the many other issues with retiming discussed
earlier, it is not appropriate to retime a design by default;
rather the user should need to turn on the appropriate logic
option. Thus, there are some additional benefits to a
commercial tool in that a user can try the option, and turn it
off in the bad cases. For the stated results, this would mean
we could characterize a user’s experience as a 50/50 chance
of success, with an expected fmax gain of 10.2% on
successful designs. This isn’t particularly interesting in a
research context, but it is worth pointing out as a practical
benefit of the gain distribution.
Quartus II software has the ability to un-map an already
synthesized and technology-mapped netlist. Thus we can
also retime netlists that come from 3rd party synthesis.
Benchmarking on such designs shows comparable gains to
those shown for Quartus synthesis using this flow.
Some attention was paid to the area problem in our
algorithm description. The effect of our retiming algorithm
on area is very small. Figure 7 shows a scatter plot of fmax
gains vs. area increases. Other than several outliers, we
note that the increase in the number of logic elements is
within –5% to +5%. The mean change in area is +1%, a
very acceptable tradeoff for the performance gains.
The gains from retiming for Altera’s Apex architecture are
comparable to those seen for Stratix, so our techniques are
not architecture-specific.
Runtime is another issue that we brought up early-on. As
claimed, the algorithm we have implemented is very fast.
The average run-time for retiming is about 2 minutes on an
800 MHz processor, with a worst-case of 11 minutes. This
includes the clean-up and minimization steps that are run

after retiming. This translates to about 16% of synthesis
runtime and 2% of the overall compile time including place
& route. The core algorithm – Bellman-Ford with binary
search, averages only about 9 seconds.
All benchmarking here is without any user don’t-touch
attributes. One would expect the results to degrade
somewhat as the problem is constrained.

6. CONCLUSIONS
In this paper we have discussed a complete algorithm for
retiming, and reported on its positive results. The algorithm
draws ideas from a number of different papers, and adds
other new ideas, in order to effectively solve fundamental
problems such as area degradation and compile time, and
combine this with correct handling of power-up conditions,
multiple clock domains, secondary signals and legality.
We defined the concept of compatible registers for retiming
and gave guidelines on unsafe register moves. To our
knowledge nobody has addressed these particular issues in
the past, and no paper has addressed all of these issues
simultaneously. We also measured the effect on quality of
results from properly implementing safe-move constraints
in the algorithm, which in our benchmarking represents an
additional 2.6% fmax gain on top of the 5.0% results for the
safe algorithm, which means that unsafe retiming overstates
gains by about one half.
Our retiming algorithm achieves 5.0% mean gains in fmax
with a negligible effect on compile time and area. However
a further contribution of this paper is to point out that this
single statistic is not at all indicative of the behavior of
retiming, and we presented a gains distribution chart that
gives a better understanding of the overall problem.
ACKNOWLEDGEMENTS
Thanks to Vaughn Betz, Guy Dupenloup, and Terry Borer
for helpful discussions.

REFERENCES
[1] J. Cong, Y. Ding. “An Optimal Technology Mapping

Algorithm for Delay Optimization in Lookup-Table Based
FPGA Designs.” In IEEE Transactions on Computer-
Aided Design, vol. 13, pp.1-12, 1994.

[2] J. Cong, S.K. Lim and C. Wu. “Performance Driven Multi-
level and Multiway Partitioning with Retiming”, in Proc.
Design Automation Conference (DAC), pp. 274-279, 2000.

[3] J. Cong and S.K. Lim. “Physical Planning with Retiming.”
In Proc. Int’l Conference on Computer-Aided Design
(ICCAD), pp.2-7, 2000.

[4] J. Cong, H. Li and C. Wu. “Simultaneous Circuit
Partitioning/Clustering with Retiming for Performance
Optimization. In Proc. Design Automation Conference
(DAC), pp. 460-465, 1999.

[5] J. Cong and C. Wu. “An Efficient Algorithm for
Performance Optimal FPGA Technology Mapping with
Retiming”. IEEE Transactions on Computer Aided Design
of Circuits and Systems, vol. 17, no. 9, pp. 738-748, 1998.

[6] J. Cong and C. Wu. “Optimal FPGA Mapping and
Retiming with Efficient Initial State Computation”., IEEE
Trans. on Computer Aided Design of Integrated Circuits
and Systems, vol. 18, no. 11, pp. 1595-1607, 1999.

[7] K Eckl, J.C. Madre, P. Zepter and C. Legl. “A Practical
Approach to Multiple-Class Retiming”. In Proc. Design
Automation Conference (DAC), 1999.

[8] G. Even, I.Y. Spillinger and L. Stock. “Retiming Revisited
and Reversed.” IEEE Trans. on Computer Aided Design of
Integrated Circuits and Systems, vol. 15, no. 3, pp. 348-
357, 1996.

[9] C. Legl, P. Vanbekbergen, A. Wang. “Retiming of Edge-
Triggered Circuits with Multiple Clocks and Load
Enables”. In Proc. Int’l workshop on Logic Synthesis
(IWLS), 1997.

[10] D. Lewis et al. “The Stratix Routing and Logic
Architecture”. Submitted to FPGA 2003.

[11] C.E. Leiserson and J.B. Saxe. “Retiming Synchronous
Circuitry”. Algorithmica, 1991

[12] N. Maheshwari and S. Sapatnekar. “Efficient Retiming of
Large Circuits.” IEEE Transactions on VLSI Systems, vol.
6, no. 1, pp. 74-83, 1998.

[13] N. Maheshwari and S. Sapatnekar. “Minimum Area
Retiming with Equivalent Initial States.” In Proc. Int’l
Conference on Computer-Aided Design (ICCAD). 1997.

[14] P. Pan. “Performance-Driven Integration of Retiming and
Resynthesis”. In Proc. Design Automation Conference
(DAC), pp. 247-252, 1999.

[15] P. Pan and C.C. Lin. “A New Retiming-Based Technology
Mapping Algorithm for LUT-Based FPGAs. In Proc.
ACM/IEEE Int’l Conference on FPGAs (FPGA), 1998.

[16] P. Pan and C.L. Liu. “Optimal Clock Period FPGA
Technology Mapping for Sequential Circuits:” ACM
Transactions on Design Automation of Electronic
Systems”, vol. 3, no. 3, 1998.

[17] H.J. Touati and R.K. Brayton. “Computing the Initial
States of Retimed Circuits”, IEEE Trans. on Computer-
Aided Design, vol. 12, no. 1, pp. 157-162, 1993.

[18] N. Shenoy and R. Rudell. “Efficient Implementation of
Retiming”. In Proc. Int’l Conference on Computer-Aided
Design (ICCAD). 1994.

[19] D.P. Singh, S.D. Brown. “Integrated Retiming and
Placement for Field Programmable Gate Arrays.” In Proc.
ACM/IEEE Int’l Conference on FPGAs (FPGA), 2001.

[20] H Zhou, V. Singhal and A. Aziz. “How powerful is
retiming?” In Proc. IEEE/ACM Int’l Workshop on Logic
Synthesis (IWLS), 1998.

Fmax and area tradeoff (Quartus synthesis)

-40.0%

-20.0%

0.0%

20.0%

40.0%

60.0%

80.0%

-40.0% -20.0% 0.0% 20.0% 40.0% 60.0% 80.0%

fmax gain

ar
ea

 in
cr

ea
se

Figure 7: Fmax vs. Area tradeoff for retiming.

