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ABSTRACT 
Retiming a netlist is an often-studied problem that is not often 
implemented in practice.   Retiming is a relatively dangerous 
operation in the synthesis flow due to its effects on simulation, 
verification, debugging, issues such as meta-stability, and because 
the timing visibility early in the CAD flow is significantly less 
than would be desired.  Many published algorithms also ignore 
important issues such as register compatibility due to secondary 
signals, don’t touch constraints, common FPGA hardware such as 
RAM and carry chains and various illegal forms of register 
moves. 
In this paper we will discuss our solution to the retiming problem 
which takes all these issues into account, provide empirical 
evidence of the viability of retiming on large industrial netlists, 
discuss the expected gains from retiming, and introduce better 
ways of analyzing and quantifying these gains.  Despite the many 
additional constraints added to the problem, we show a 5.0% 
mean improvement in performance with retiming vs. without on a 
large set of industrial designs, and further that implementing 
retiming without attention to legality overstates the gain by half. 
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1. INTRODUCTION 
Register retiming is a synthesis operation in which registers 
are moved across combinational gates in the netlist in order 
to balance the delay on paths in the netlist, and hence 
minimize the length of the longest path. 
There are many solutions to retiming, but it is not often 
discussed in the context of production quality tools for 
various reasons:  compile time, practical issues, legality 
problems and difficulties with simulation and verification. 
Nonetheless, there are significant gains to be had from a 
proper and safe implementation of register retiming.  We 
find that some designs see huge gains in performance. 
This paper outlines a complete algorithm for retiming in 
FPGA-based designs, in which we do not just solve the 
algorithmic problem, but do so efficiently, and with all of 
the pitfalls of retiming properly addressed.  Though some 
papers have attempted to extend the pure algorithmic 
problem to some additional problems such as register 
power-up-conditions or reset signals, no paper that we are 
aware of has discussed and solved all of these and other 
issues that we will describe, or attempted to retime designs 
which are representative of the type of complicated logic 
found in industrial FPGA designs. 

In Section 2 we introduce the classical retiming problem, 
some of the known algorithmic solutions, and some of the 
often ignored drawbacks of retiming.  In Section 3 we give 
our algorithm for gate-level retiming, which is based on 
ideas from other papers as well as new approaches, and 
discuss how to deal with the practical issues required in any 
realistic CAD flow.  Section 4 further discusses legality 
issues such as meta-stability, and shows the effects that 
implementing these restrictions will have on the quality of 
results.  Section 5 gives our empirical results on a number 
of industrial benchmark designs, and we conclude in 
Section 6. 

2. REGISTER RETIMING 
The measure of performance in a synchronous netlist is the 
longest delay of any register-to-register path in ns (called 
r2r) or, more commonly, 1000/r2r which gives the 
maximum clock-speed in MHz at which the design can be 
implemented without forcing functional failure. We will 
call this measure fmax. 
In a typical netlist, this worst case delay is not realized by 
all register-to-register paths, so an attractive option is to 
move registers across combinational gates in order to 
balance the delays among all paths, and hence minimize the 
worst-case delay. 
A simplified diagram of a retiming operation is shown in 
Figures 1 and 2. Figure 1 shows a graph in which the worst-
case register-to-register depth is three, with a pin-to-register 
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Figure 1: A netlist with logic depth three. 
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Figure 2: The netlist of Figure 1 after retiming. Logic depth 
is reduced to one. 



    

  
  

and a register-to-pin depth of zero (clock signals are not 
drawn, all registers are assumed to have the same clock). 
Depths are measured in gates. By register retiming, we can 
balance the lengths of the combinational paths and make the 
input-to-register, register-to-register and register-to-output 
depths all equal to one. Figure 2 shows the result of this. 
Register H from Figure 1 is moved backwards over gate C, 
resulting in two new registers H1 and H2. Register E is 
duplicated: the original is feeding A and B, the duplicate is 
feeding gate D. The duplicate of E and register G are 
moved forward over gate D, resulting in register G1.  
The retiming problem can be modeled as follows.  Given is 
a directed graph G=(V, E). Each node v has a non-negative 
node delay d(v), and each edge e has a non-negative integer 
weight w(e), which represents the number of registers on 
this edge. A retiming of a graph is a function r that maps 
each node to an integer r(v). The retimed weight wr(e) of an  
edge e=(u,v) is w(e)+r(v)-r(u). A retiming is legal if the 
retimed weights of all edges are non-negative. The delay of 
a node in the graph G with retiming r is defined to be Dr(v) 
= d(v) + max{ Dr(u) | (u,v) in E and wr(u,v) = 0 }. The 
graph delay or clock period is the maximum of Dr(v) over 
all nodes. Given a graph G=(V,E) with weights and node 
delays, the objective of the retiming problem is to find a 
retiming r such that the clock period is minimum.  
The first algorithmic solution to the problem was given by 
Leiserson and Saxe [11]. They present a dynamic 
programming algorithm based on Bellman-Ford that finds a 
retiming for a given target clock period c, if it exists. 
Pseudo-code for this algorithm is given below. 
ComputeRetiming(G)
set r(v) = 0 for each node v
for i = 0 to |V|-1

ComputeDelays(G,r)
for each node v with Dr(v) > c

increment r(v) by 1
ComputeDelays(G,r)
if any node has Dr(v) > c

there is no feasible retiming for c. 
Function ComputeDelays(G,r) computes the delays Dr in 
the graph for the given retiming with a similar algorithm. 
ComputeDelays(G,r)
set Dr(v) = 0 for each node v
for i = 0 to |V|-1

for each edge e=(u,v) with w(e)+r(v)-r(u)=0
Dr(v) = max(Dr(v), Dr(u)+d(v))

Stop if none of the delays have changed

If after |V| iterations, Dr(v) still changes, this means that the 
graph contains a positive cycle, and there is no solution. In 
this case, the algorithm takes O(|V||E|) time. In most 
practical cases this is too slow. Shenoy & Rudell [18] 
presented a speed-up of this algorithm, which makes the 
worst-case runtime O(c|E|) time, where c is the length of the 
smallest cycle with positive delay. They apply a similar 
speed-up to the retiming algorithm itself. 

Given this algorithm, the optimum clock period retiming of 
a graph can be found by applying binary-search on all the 
possible clock periods. As an upper bound for the retiming 
we can take the delay of the graph before retiming.  
Leiserson and Saxe also discuss the problem of minimum 
area retiming under delay constraints. This is the problem 
where we try to find a retiming with the minimum number 
of registers for a given target clock period. This problem is 
also solvable in polynomial time, although the naïve 
algorithm is very inefficient in practice. Shenoy and Rudell 
[18] and Maheshwari and Sapatnekar [12] discuss more 
efficient implementations of this algorithm. However, these 
algorithms are not as simple and efficient as the Bellman-
Ford algorithm for minimum clock period retiming.  
Another well-studied problem in retiming is the initial state 
problem: each register in the circuit has an initial state or 
power-up condition which may be high, low or don’t care. 
This is the value that the register has at power-up of the 
circuit. When moving registers around in the circuit, these 
initial states have to be preserved, that is, the design has to 
power-up in the same way. When moving registers forward 
in the circuit (i.e. from inputs to outputs), preserving the 
power-up state is always possible, because the initial state 
of the new register can be computed by simulating the gate 
through which the register has been moved forward. 
However, when moving registers backwards in the circuit, 
initial state computation is harder, and sometimes even 
impossible. The problem of computing initial states for the 
retimed circuit is NP-hard. Many papers give heuristics to 
solve this problem, but most are too inefficient and 
complicated to apply in a practical environment (Touati & 
Brayton [17], Even, Spillinger & Stok [8], Maheshwari & 
Sapatnekar [13], and many more). 
When mapping for LUT-based FPGAs, applying retiming 
before mapping to LUTs does not guarantee optimal LUT 
depth. Retiming on LUTs after mapping however, also does 
not give optimal LUT depth. Pan and Liu [16] introduce an 
algorithm that simultaneously maps simple gates to LUTs 
and applies retiming. Their algorithm guarantees optimal 
LUT depth, but is very complicated and computationally 
expensive. Runtime improvements of the algorithm have 
been presented by Pan and Lin [15], and Cong and Wu [5]. 
The latter also considered area minimization. Cong and Wu 
[6] also extended the algorithm to incorporate initial state 
computation.  
In most real-life circuits, there are multiple different clock 
domains, and registers have secondary signals like clock 
enables, asynchronous clears, etc. Legl, Vanbekbergen and 
Wang [9], address the problem of retiming circuits with 
clock enables, which later is extended to reset signals by 
Eckl et al. [7]. They present an efficient algorithm to 
compute upper and lower bounds on the retiming of nodes 
that guarantee that any retiming satisfying these bounds will 
be legal w.r.t. the clock enables and reset signals. They also 



    

  
  

present a heurstic to retime a circuit that consists of 
multiple related clock domains. 
Many papers try to overcome the problem of the lack of 
estimates of interconnect delay by applying retiming during 
clustering and partitioning (Cong, Li and Wu [4], Cong, 
Lim and Wu [2]), during placement (Singh and Brown 
[19]), and in physical synthesis (Cong and Lim [3]). 
There are a number of “pitfalls” in retiming which are 
rarely discussed in the literature.  One of the primary 
contributions of this paper is in discussing a solution to the 
problem that does take all of these problems into account.  
For example, we must deal with multiple clock-domains 
and secondary signals that introduce the notion of 
compatible registers.  These are a particular issue for 
FPGAs, which often contain interface logic with different 
clock domains.  Other issues include the interaction with 
user constraints − a don’t touch designation is critical for 
any serious design in which the designer needs to maintain 
internal registers for debug purposes − and restrictions on 
retiming to avoid meta-stability and cross clock domain 
problems.  The latter we will refer to as legality issues in 
retiming, and we devote Section 4 to the topic.  Power-up 
conditions have been dealt with in the past, but we are not 
aware of any published papers that cover all the topics 
necessary for a production quality system simultaneously. 

3. OUR ALGORITHM 
Our retiming algorithm is incorporated in a production tool, 
which means it has to run fast and be maintainable. These 
requirements rule out algorithms that combine technology 
mapping and retiming for two reasons. First these 
algorithms tend to be time consuming. Second they are so 
intertwined with the technology mapping algorithm that it 
will be very hard to get it to work with all the tiny little 
details that are in a production version of a technology 
mapping algorithm for multiple different device 
architectures. Therefore, we have chosen to implement 
retiming as a separate algorithm that runs on netlists 
consisting mostly of simple gates and LUTs.  
Input to our retiming algorithm is a netlist consisting of 
simple gates (mostly AND, OR, XOR, and LUTs), primary 
inputs and outputs, registers, and some gates that are 
considered hard boundaries for retiming, such as RAM, 
DSP blocks, and carry chains. Each register has a power-up 
condition (high, low, or don’t care), and zero or more of the 
following secondary signals: asynchronous reset (clr), 
asynchronous preset (pre), and asynchronous load with 
corresponding data (aload/adata), 
The ultimate goal of retiming is to move registers around in 
the netlist such that, after technology mapping, placement 
and routing, each clock in the design runs at the highest 
possible speed. Since we have imprecise visibility of 
placement and routing during synthesis, we can only use a 
delay model that takes no placement and routing into 

account. Our delay model is mostly unit-delay, with some 
special delays for LUT gates and miscellaneous gates like 
carries for which there is a fast connection on the chip. 
Even though our experience is that depth does not correlate 
perfectly to final fmax, improving depth while marginally 
increasing area in general makes final fmax better. Hence, 
the goal of our retiming algorithm is to move registers 
around such that for each clock domain, the clock period 
after retiming of that clock domain is optimal with respect 
to our delay model (though evaluation will use final place 
& route fmax). 
The most important constraint for our algorithm is that the 
netlist after retiming is functionally equivalent to the netlist 
before retiming. Another important constraint is that the 
area increases at most 2% on average, and preferably never 
more than 20%. Other constraints are usability constraints 
that prevent movement of some registers and that disallow 
movement of registers over certain gates (e.g. RAM, carry 
chains). Some more issues are discussed in Section 4 
Our algorithm consists of three steps. 
1. Build a retiming graph from the relevant part of the 

netlist. 
2. Find an optimum clock period retiming in the graph, 

satisfying the given constraints. 
3. Apply the obtained retiming to the netlist. 
Most research papers only address step 2. It is interesting to 
note that in our implementation, step 2 makes up less than 
20% of the code for the complete algorithm. We will 
discuss each step of the algorithm in more detail in the 
following sections.  

3.1 Building the Retiming Graph 
The retiming graph has to model the gates and 
interconnections that are involved in the retiming, but also 
all possible restrictions that need to be satisfied. We run 
retiming per clock domain, and will make separate retiming 
graphs for each clock domain. 
The graph consists of input nodes, output nodes, internal 
nodes, and a so-called host node. For each combinational 
gate (simple, LUT, or complete logic cell) that is connected 
to a register in the current clock domain, we create an 
internal node in the graph. For each hard boundary gate, we 
create an input and/or an output node in the graph, 
depending on whether it feeds or is fed by combinational 
logic that needs to be included in the graph. For each two 
nodes u and v in the graph, there is an edge from u to v for 
every path through only registers from the gate 
corresponding to u to the gate corresponding to v. The 
weight of this edge equals the number of registers on the 
path. Figure 3 shows how a netlist is translated into a 
retiming graph. Clock and secondary signals of the registers 
are ignored. The solid bars in the graph denote registers: the 
number of bars on an edge equals its weight. The existence 
of node H (the host node) is explained below.  



    

  
  

To explain the use of the host node, it is important to know 
that we use Leiserson & Saxes retiming algorithm to 
determine a legal retiming for a given clock period. In order 
to use this algorithm, we need to be able to move registers 
from output pins to input pins and vice versa in the retiming 
graph, even though this is not legal in the circuit. We create 
a host node H that has an outgoing edge to each input node 
and an incoming edge from each output node. This allows 
us to move registers from outputs to inputs and vice versa. 
In the circuit, it is not legal to move registers out of the 
circuit, or into the circuit, which means that we have to 
ensure that for our final retiming, r(v) = 0 for all input and 
output nodes v. This is modeled by giving each incoming 
and outgoing edge of the node H weight one, and setting 
the delay of node H to current target clock period. It can be 
verified that in this way, any feasible retiming can always 
be changed into a feasible retiming with the same clock 
period in which the host node and the input and output 
nodes all have r(v) = 0. 
Given a gate and a register on each of its inputs, we can 
only apply forward retiming if the registers on its inputs are 
compatible. We define two registers to be compatible if 

and only if they have the same clock enable, their 
asynchronous signals are triggered at the same time, and 
furthermore, if both registers have an asynchronous load, 
they load the same data. If the registers on the inputs of a 
gate are compatible we can move them through the gate and 
compute the asynchronous signals and power-up state of the 
new register by simulating the gate. Figure 4 and Table 1 
show an example of this for forward retiming through an 
XOR gate. For each value of an input pin, Table 1 contains 
the corresponding value of the registers and gates. 
To make sure we never try to move incompatible registers 
forward over a gate, we set lower bounds on the retiming 
numbers of certain nodes. Legl, Vanbekbergen & Wang [9] 

and Eckl et al. [7] show how this can be done for registers 
with clock enables, clear and preset. We extend this to 
handle asynchronous loads as well:  Each register is given a 
class, which basically consists of a clock enable, a list of 
signals that trigger asynchronous events, and the 
asynchronous data signal if it exists.  Two classes are 
compatible if they have the same clock enable, the same list 
of asynchronous trigger signals, and either the same 
asynchronous data or one has no asynchronous data. Note 
that compatibility is not an equivalence relation.  
Initially when we build the retiming graph, we give each 
edge (u,v) a list of classes of registers that is formed as 

follows. Suppose when walking on the path from u to v in 
the netlist, we meet registers r1, r2, …, rn in this order. Then 
the class list on the edge (u,v) will be (c(r1),c(r2),…,c(rn)), 
where c(ri) is the class of ri. With these class lists we 
compute a so-called maximal forward retiming of the graph, 
by applying forward retiming as much as possible, but only 
moving registers forward over a node when all involved 
registers are compatible. The class lists are adapted during 
the forward moves. See [9] and [7] for details. When no 
changes can be made anymore, we have found a maximum 
forward retiming of the graph. For each node in the graph 
that has incoming edges with positive weight, but can not 
be forward retimed anymore because the registers are 
incompatible, we set the current retiming number as a lower 
bound on the node. The class lists on the edges will be 
discarded after this. 
In the retiming graph, lower bounds on retiming numbers of 
nodes are implemented by adding extra edges to the 
retiming graph. For instance, if we have a lower bound of k 
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Figure 3: A netlist and its retiming graph. 
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Signal A B C 
Power-up 1 0 1 
CLR 0 0 0 
PRE 1 1 0 
ALD D 1 D’ 

Table 1: Simulating the asynchronous secondary signals  
for the netlist in Figure 4. 



    

  
  

on the retiming number r(u) for a given node u, we add an 
edge from H to u with weight k+1.  
For backward retiming, we could have applied the same 
idea to avoid merging incompatible registers, similar to [7]. 
However, in this case, it is always possible to insert extra 
logic to fix the problem of incompatible registers, as is 
shown in Section 3.3. We found that it would limit the 
ability for backward moves by too much.  

3.2 Finding a good retiming 
As said before, a major requirement for the algorithm is that 
it needs to be fast. Therefore we start with the Bellman-
Ford algorithm as presented by Leiserson & Saxe [11], with 
the additional speed-ups as presented by Shenoy & Rudell 
[18]. To find the best possible cycle time, we apply binary 
search on the cycle time.   
When the optimal clock period is found we need to find a 
retiming for this clock period that keeps the area increase 
under control. We try to minimize the number of register 
moves, because that has proven to be a good method to 
control area. Especially backward moves have a potential to 
increase area, because they may introduce extra logic. 
Even, Spillinger & Stok [8] apply Bellman-Ford in reverse 
order, starting from outputs instead of inputs. They claim 
that it helps keep the total number of backward moves 
down. We implemented this and found that the algorithm 
works well for circuits that don’t need backward moves, 
since it will generate none. However, for circuits that 
require backward moves their algorithm usually needs more 
backward moves than the original one (this was also noted 
in [5]). Since it cannot be decided beforehand which 
algorithm will result in less backward moves, we apply four 
variations, and pick the best result. The four algorithms are 
(1) Bellman-Ford, (2) reverse Bellman-Ford, (3) start with 
forward Bellman-Ford, set retiming to zero for all nodes 
with r(v) < 0, and apply reverse Bellman-Ford on the partial 
solution, and (4) start with reverse Bellman-Ford, set r(v) to 
zero for all nodes with r(v) > 0 and apply forward Bellman-
Ford on the partial solution. The noted speed-ups apply to 
each of these variations, and after Bellman-Ford, we change 
the retiming of each node such that all input and output 
nodes have retiming zero. The metric for “best” is min 
sum{-r(v)*w1 | r(v) < 0} + sum{r(v)*w2 | r(v) > 0}, where 
w1 and w2 are weights we give to forward and backward 
moves, respectively. 

3.3 Applying the Retiming to the Netlist 
When the final retiming is found in the retiming graph, it 
has to be applied to the netlist. Note that at this point we 
assume the given retiming has r(v)=0 for the host node and 
all input and output nodes. The retiming is applied to the 
netlist by moving registers over gates one by one. First the 
forward retiming is applied to all nodes with the following 
algorithm. It maintains a stack of all nodes v for which 
r(v)<0 that have registers on all inputs. Then as long as the 

stack is non-empty, it pops a node from the stack, calls the 
function ForwardRetime on this node, and pushes new 
nodes that require forward retiming on the stack when 
necessary. The function ForwardRetime(v) forward-retimes 
the gate in the netlist that corresponds to node v, and 
increments r(v). It applies simulation to compute the power-
up state and asynchronous secondary signals of the new 
register that is placed on the output of the gate. See also 
Figure 4 and Table 1.  
When the forward retiming algorithm is completed, it is 
guaranteed that r(u)>=0 for all nodes u in the graph. After 
this, we apply backward retiming in the same way. Like 
procedure ForwardRetime, we also need a procedure 
BackwardRetime that applies backward retiming to a gate 
in the netlist. This function is different from the forward 
retiming, because it may encounter incompatible registers 
and furthermore, it is not always possible to compute new 
power-up states and asynchronous secondary signals after 
moving registers backwards through a gate. The procedure 
to solve these problems goes as follows.  
Given a gate that needs to be backward retimed, we know 
that it fans out to only registers. We first merge registers 
that are equivalent. If the gate still fans out to more than 
one register after this, then  these registers are incompatible, 
and the gate is duplicated such that each copy has fanout to 
only one of the registers. All duplicates of the gate will be 
backward retimed. To backward retime each single output 
gate, the register is removed from its fanout and registers 
are inserted at each of the fanins of the gate. If the gate is an 
AND or OR gate, the new registers get exactly the same 
power-up setting and asynchronous signals as the original 
register. It can easily be verified that this gives exactly the 
same functionality for this gate. If the gate is an XOR or 
LUT however, setting the same power-up and asynchronous 
signals would not necessarily give the same functionality. 
To ensure the same behavior, we do not set different preset 
and clear signals on the new registers. Instead, we give both 
registers power-up don’t care and no asynchronous 
secondaries. Then at the fanout of the gate, we insert some 
extra logic and registers to fix the problem. See Figure 5 for 
an example.  

4. LEGALITY AND PRACTICAL ISSUES  
There are many issues that make it dangerous or illegal to 
move certain registers in a design, in a sense that the 
register moves may change the behavior of the circuit 
without the designer realizing it, or even being able to 
detect it. These issues are usually ignored in most research 
papers, but have to be taken into account in a real-life 
implementation, and do change the quality of results (by 
about 50%, as we will see later). We list some of these 
issues below. 
Registers fed by unrelated clock domains. Registers in a 
design may be fed by registers in other clock domains, 
either directly or through combinational logic. When the 



    

  
  

clock domains are unrelated, it is dangerous to duplicate the 
register that is fed by the other clock domain: after 
duplicating it, the two registers may clock in different data 
at the same clock edge, because they see the data at slightly 
different times, or because of clock skew. Problems like this 
are hard to discover for designers, thus we disallow moves 
of these types of registers.  
When a register is fed by a different clock domain, it may 
go in a meta-stable condition due to setup and hold time 
violations. To make sure that meta-stable registers don’t 
feed other logic on the chip, the data that comes from the 
unrelated clock domain is often fed through a sequence of 
two registers with the same clock, before feeding other 
logic, to drastically decrease the probability of meta-
stability on the register feeding the rest of the circuit. It is 
clear that if these synchronization registers are moved away 
from each other, the absence of meta-stability cannot be 
guaranteed. Hence we do not allow those moves.  
Input/output registers. Registers that are directly fed by a 
pin or directly feeding a pin, are often there on purpose, so 
that the designer gets deterministic I/O timing. Therefore, 
we do not move these registers. 
Registers feeding asynchronous signals on other registers. 
Duplicating these registers may result in glitches in the 
asynchronous signal, which may result in unexpected values 
on the register. Therefore we do not move registers that 
feed asynchronous signals on other registers.  
Registers feeding registers in another clock domain. To be 
safe we do not move these registers either. 
The restrictions described above infer that retiming has less 
flexibility in moving registers around. Since we are 
potentially over-restrictive on some of the above 
assumptions and rules, the user has the ability to override 
our rule by setting a logic option on the register when they 
know the retiming is safe. 
Non-retimable critical paths. When a large number of 
registers cannot be moved due to reasons described above, 
the delay-critical path in the retiming graph may be formed 
by a zero-weight path from input nodes to output nodes. 

Since these paths cannot be improved by retiming in any 
way, they are limiting the retiming. We partly solve this 
problem by removing all edges from the retiming graph that 
are not on any path with an edge with positive weight (i.e. a 
movable register). The idea behind this to ignore the 
critical path that cannot be retimed, and instead concentrate 
on the next critical path. In the end, this will help fmax, 
because place & route will deal with less near-critical 
paths. 
Timing constraints. Designers can put timing constraints on 
individual registers. For instance, they can put a multi-cycle 
constraint from register A to B, meaning that B only clocks 
in the data from A once every so many cycles. When two 
registers have different timing constraints, we cannot move 
them over a gate and merge them, because this would 
invalidate the timing constraints. We currently disallow 
movement of registers with individual timing assignments.  
Verification. Most verification tools that are currently on 
the market only do static verification of combinational 
logic. However, this technique is not sufficient to verify that 
a netlist before retiming is functionally equivalent to the 
netlist after retiming. This makes it very hard to use 
retiming when verification is needed. 
Simulation. The retimed netlist will have the same 
input/output behavior as the netlist before retiming. This 
means that simulation on input and output pins will not give 
any problems. But it will be impossible to simulate registers 
in the netlist, because registers disappear from the netlist. 
Similar problems occur when using signal-tap (hardware 
debug macros supported by the tool) to probe internal 
nodes. 
We support the latter two issues essentially through user 
logic-options such as don’t-touch which can be assigned to 
named registers in the design, and by outputting a detailed 
report on registers created and removed by retiming. 

5. EMPIRICAL RESULTS 
Our results are based on synthesis with Altera’s Quartus II 
V2.2 software, using the Stratix architecture [10].   
We run our retiming algorithm at the end of technology 
independent synthesis, before technology mapping. At this 
time, the netlist consists mostly of simple gates, which 
allows for many potential places in the netlist to move 
registers to. At the end of technology independent 
synthesis, we have a good visibility of the depth of the final 
mapping: experiments show that at this point, the depth in 
two-input gates correlates well to the final LUT depth after 
mapping. Before running retiming we therefore decompose 
all simple gates into two-input gates, using the algorithm 
DMIG [1], which finds a decomposition that guarantees 
optimal gate depth. 
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Figure 6: Fmax gain distribution chart for retiming  
(Quartus II synthesis with and without retiming) 

The retiming algorithm is run for each clock domain 
separately. After retiming is finished, we run a clean-up 
function that makes sure all power-up states and 
asynchronous secondary signals are legal for the current 
device, followed by a number of logic minimization steps 
to remove duplicate registers and redundant logic that may 
be introduced by retiming. 
We compare final fmax results (after placement, routing 
and timing analysis) when the retiming algorithm is turned 
on vs. off, along with area and runtime.  The data 
represents average results on a per-design basis with each 
design run on two initial placement seeds. 
The designs used for these experiments are industrial 
designs that range in size from 12,000 to 56,000 4-
LUT+DFF logic elements, and include multiple types of 
RAM and DSP blocks (dedicated multiply/accumulate 
hardware).   The size of the retiming graph ranges up to 
210,000 nodes (gates) in the largest case. 
The geometric mean improvement in fmax from our 
retiming algorithm is 5.0%.  However, this is not an 
accurate metric of the behavior of retiming.  Figure 6 
contains a gain distribution chart, showing the individual 
gains over all the designs tested with the algorithm.  
Though the average improvement is 5.0%, the results are 
roughly split between winners and losers/ties, with 39 
winners gaining 10.2%, 13 ties with no effect, and 15 losers 
giving up 3.9% fmax.   The large number of zeros deserves 
mention:  when the retiming algorithm decides it cannot 
improve the design we guarantee identical results to the 
previous case by just not back-annotating the retiming.  The 
negative results represent designs for which the timing 
model used in retiming predicted a gain, but this turned out 
to be a loss after place & route. 
Designs that have already been well pipelined by the user, 
and designs which are well-written in general we feel have 
less to gain from retiming.  Designs in the prototype stage, 
or which have not been analyzed completely tend to get 
significant gains from retiming.  Thus, we believe that this 
gain distribution is characteristic of retiming in general, and 
is a crucial part of presenting the results. We have some 
examples of large designs where over 200% improvements 
can be achieved with retiming, in one case the critical path 
goes through a poorly coded multiplier followed by a 
multiple-bit shift-register.  Such a design would 
significantly improve our reported mean gain.  However we 
have decided that these outliers are not realistic and 
overstate the gains from retiming, so we do not include 
them in our benchmarking results here. 
For evaluation purposes, we can allow the unsafe retiming 
discussed in Section 4, and we find that safety constraints 
block an additional 2.6% fmax gain, which is about 50% 
over the 5.0% reported for safe retiming.  This means that, 
in addition to generating potentially non-functional circuits, 

any tools which do not enforce these rules are likely over-
estimating the gains by a third. 
Because of the many other issues with retiming discussed 
earlier, it is not appropriate to retime a design by default; 
rather the user should need to turn on the appropriate logic 
option.  Thus, there are some additional benefits to a 
commercial tool in that a user can try the option, and turn it 
off in the bad cases.  For the stated results, this would mean 
we could characterize a user’s experience as a 50/50 chance 
of success, with an expected fmax gain of 10.2% on 
successful designs.  This isn’t particularly interesting in a 
research context, but it is worth pointing out as a practical 
benefit of the gain distribution. 
Quartus II software has the ability to un-map an already 
synthesized and technology-mapped netlist.  Thus we can 
also retime netlists that come from 3rd party synthesis. 
Benchmarking on such designs shows comparable gains to 
those shown for Quartus synthesis using this flow.   
Some attention was paid to the area problem in our 
algorithm description. The effect of our retiming algorithm 
on area is very small.  Figure 7 shows a scatter plot of fmax 
gains vs. area increases.  Other than several outliers, we 
note that the increase in the number of logic elements is 
within –5% to +5%.  The mean change in area is +1%, a 
very acceptable tradeoff for the performance gains. 
The gains from retiming for Altera’s Apex architecture are 
comparable to those seen for Stratix, so our techniques are 
not architecture-specific. 
Runtime is another issue that we brought up early-on.  As 
claimed, the algorithm we have implemented is very fast.  
The average run-time for retiming is about 2 minutes on an 
800 MHz processor, with a worst-case of 11 minutes.  This 
includes the clean-up and minimization steps that are run 



    

  
  

after retiming. This translates to about 16% of synthesis 
runtime and 2% of the overall compile time including place 
& route.  The core algorithm – Bellman-Ford with binary 
search, averages only about 9 seconds. 
All benchmarking here is without any user don’t-touch 
attributes.  One would expect the results to degrade 
somewhat as the problem is constrained. 

6. CONCLUSIONS  
In this paper we have discussed a complete algorithm for 
retiming, and reported on its positive results.  The algorithm 
draws ideas from a number of different papers, and adds 
other new ideas, in order to effectively solve fundamental 
problems such as area degradation and compile time, and 
combine this with correct handling of power-up conditions, 
multiple clock domains, secondary signals and legality. 
We defined the concept of compatible registers for retiming 
and gave guidelines on unsafe register moves.  To our 
knowledge nobody has addressed these particular issues in 
the past, and no paper has addressed all of these issues 
simultaneously.  We also measured the effect on quality of 
results from properly implementing safe-move constraints 
in the algorithm, which in our benchmarking represents an 
additional 2.6% fmax gain on top of the 5.0% results for the 
safe algorithm, which means that unsafe retiming overstates 
gains by about one half. 
Our retiming algorithm achieves 5.0% mean gains in fmax 
with a negligible effect on compile time and area.  However 
a further contribution of this paper is to point out that this 
single statistic is not at all indicative of the behavior of 
retiming, and we presented a gains distribution chart that 
gives a better understanding of the overall problem. 
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Figure 7:  Fmax vs. Area tradeoff for retiming. 


